The strength of the class forcing theorem

Kameryn J Williams

Joint work with Victoria Gitman, Joel David Hamkins, Peter Holy, and Phillip Schlict.

CUNY Graduate Center

CUNY Set Theory Seminar 2017 Oct 13

Theorem (Forcing theorem)

 \mathbb{P} is a set-sized separative partial order. $G \subseteq \mathbb{P}$ generic over V.

- $V[G] \models \varphi(a_1, \ldots, a_n)$ iff $p \Vdash \varphi(\dot{a}_1, \ldots, \dot{a}_n)$ for some $p \in G$.
- p |⊢ φ is definable. (For each k the relation p |⊢ φ for Σ_k formulae φ is definable.)

Theorem (Forcing theorem)

 \mathbb{P} is a set-sized separative partial order. $G \subseteq \mathbb{P}$ generic over V.

- $V[G] \models \varphi(a_1, \ldots, a_n)$ iff $p \Vdash \varphi(\dot{a}_1, \ldots, \dot{a}_n)$ for some $p \in G$.
- p |⊢ φ is definable. (For each k the relation p |⊢ φ for Σ_k formulae φ is definable.)

This is a theorem of (a fragment of) ZFC.

Second-order set theory

Models look like (M, \mathcal{X}) with sets and classes.

(日) (同) (三) (三)

Second-order set theory

Models look like (M, \mathcal{X}) with sets and classes.

Definition

Gödel-Bernays set theory GBC has axioms

- ZFC for the first-order part;
- Extensionality for classes;
- Replacement: for class function F and set a we have F''a is a set;
- Global Choice: there is a bijection $\operatorname{Ord} \to V$; and
- Elementary Comprehension: for φ with only set quantifiers and class A the following is a class:

$$\{x:\varphi(x,A)\}.$$

Second-order set theory

Models look like (M, \mathcal{X}) with sets and classes.

Definition

Gödel-Bernays set theory GBC has axioms

- ZFC for the first-order part;
- Extensionality for classes;
- Replacement: for class function F and set a we have F''a is a set;
- Global Choice: there is a bijection $\operatorname{Ord} \to V$; and
- Elementary Comprehension: for φ with only set quantifiers and class A the following is a class:

$$\{x:\varphi(x,A)\}.$$

Fact GBC is conservative over ZFC: for first-order φ , GBC $\vdash \varphi$ iff ZFC $\vdash \varphi$. < D > < A < > < < > K Williams (CUNY) The strength of the class forcing theorem 2017 Oct 13 3 / 43

Definition

Kelley-Morse set theory KM has the axioms of axioms of GBC plus

• Second-Order Comprehension: for *φ*, possibly with class quantifiers, and class *A* the following is a class:

 $\{x:\varphi(x,A)\}.$

Definition

Kelley-Morse set theory KM has the axioms of axioms of GBC plus

• Second-Order Comprehension: for φ , possibly with class quantifiers, and class A the following is a class:

 $\{x:\varphi(x,A)\}.$

Fact

KM is not conservative over ZFC, e.g. proving Con(ZFC).

Theorem (Friedman)

GBC proves that all pretame class forcing notions satisfy the forcing theorem.

K Williams (CUNY)

The strength of the class forcing theorem

◆ ● ■ ● ■ ● ○ Q ○
2017 Oct 13 5 / 43

• • • • • • • • • • • •

Theorem (Holy, Krapft, Lücke, Njegomir, Schlicht)

There is a (definable) class forcing notion \mathbb{F} so that first-order truth is definable from $\Vdash_{\mathbb{F}}$ (for quantifier-free formulae).

Corollary

Over GBC, the forcing theorem for \mathbb{F} implies Con(ZFC).

Theorem (Antos)

KM proves the forcing theorem for all class forcing notions.

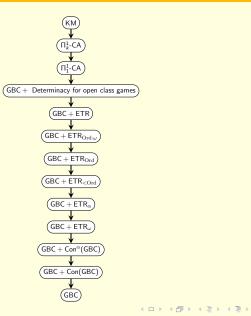
K Williams (CUNY)

The strength of the class forcing theorem

▲ ≣ ▶ ≣ ∽ ৭.০
 2017 Oct 13 7 / 43

(日) (同) (三) (三)

What is the strength of the class forcing theorem?

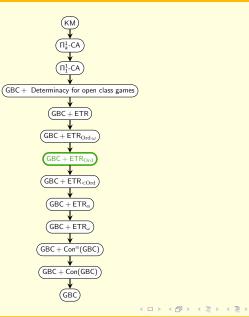


K Williams (CUNY)

The strength of the class forcing theorem

▶ ▲ 클 ▶ 클 ∽ � @ 2017 Oct 13 8 / 43

What is the strength of the class forcing theorem?



K Williams (CUNY)

The strength of the class forcing theorem

▶ ▲ 重 ▶ 重 少 Q @ 2017 Oct 13 8 / 43

K Williams (CUNY)

The strength of the class forcing theorem

▶ ▲ ≣ ▶ ≣ ∽ ९ ୯ 2017 Oct 13 9 / 43

• • • • • • • • • • • •

Definition

 ${\mathbb P}$ admits a forcing relation for atomic formulae if there are relations

$$p \Vdash \sigma \in \tau, \quad p \Vdash \sigma \subseteq \tau, \quad p \Vdash \sigma = \tau$$

satisfying

- $p \Vdash \sigma \in \tau$ iff there are densely many $q \leq p$ so that there is $\langle \rho, r \rangle \in \tau$ with $q \leq r$ and $q \Vdash \sigma = \rho$;
- $p \Vdash \sigma \subseteq \tau$ iff $\langle \rho, r \rangle \in \sigma$ and $q' \leq p, r$ implies there is $q \leq q'$ with $q \Vdash \rho \in \tau$; and
- $p \Vdash \sigma = \tau$ iff $p \Vdash \sigma \subseteq \tau$ and $p \Vdash \tau \subseteq \sigma$.

Definition

 ${\mathbb P}$ admits a forcing relation for atomic formulae if there are relations

$$p \Vdash \sigma \in \tau, \quad p \Vdash \sigma \subseteq \tau, \quad p \Vdash \sigma = \tau$$

satisfying

- $p \Vdash \sigma \in \tau$ iff there are densely many $q \leq p$ so that there is $\langle \rho, r \rangle \in \tau$ with $q \leq r$ and $q \Vdash \sigma = \rho$;
- $p \Vdash \sigma \subseteq \tau$ iff $\langle \rho, r \rangle \in \sigma$ and $q' \leq p, r$ implies there is $q \leq q'$ with $q \Vdash \rho \in \tau$; and

•
$$p \Vdash \sigma = \tau$$
 iff $p \Vdash \sigma \subseteq \tau$ and $p \Vdash \tau \subseteq \sigma$.

• We can unify the three relations into a single relation, since they are distinguished syntactically.

Definition

 ${\mathbb P}$ admits a forcing relation for atomic formulae if there are relations

$$p \Vdash \sigma \in \tau, \quad p \Vdash \sigma \subseteq \tau, \quad p \Vdash \sigma = \tau$$

satisfying

- $p \Vdash \sigma \in \tau$ iff there are densely many $q \leq p$ so that there is $\langle \rho, r \rangle \in \tau$ with $q \leq r$ and $q \Vdash \sigma = \rho$;
- $p \Vdash \sigma \subseteq \tau$ iff $\langle \rho, r \rangle \in \sigma$ and $q' \leq p, r$ implies there is $q \leq q'$ with $q \Vdash \rho \in \tau$; and

•
$$p \Vdash \sigma = \tau$$
 iff $p \Vdash \sigma \subseteq \tau$ and $p \Vdash \tau \subseteq \sigma$.

- We can unify the three relations into a single relation, since they are distinguished syntactically.
- $p \Vdash \sigma \subseteq \tau$ can be expressed in terms of $p \Vdash \sigma \in \tau$ and $p \Vdash \sigma = \tau$, so it's merely a convenience.

(日) (同) (三) (三)

Definition

 ${\mathbb P}$ admits a forcing relation for atomic formulae if there are relations

$$p \Vdash \sigma \in \tau, \quad p \Vdash \sigma \subseteq \tau, \quad p \Vdash \sigma = \tau$$

satisfying

- $p \Vdash \sigma \in \tau$ iff there are densely many $q \leq p$ so that there is $\langle \rho, r \rangle \in \tau$ with $q \leq r$ and $q \Vdash \sigma = \rho$;
- $p \Vdash \sigma \subseteq \tau$ iff $\langle \rho, r \rangle \in \sigma$ and $q' \leq p, r$ implies there is $q \leq q'$ with $q \Vdash \rho \in \tau$; and

•
$$p \Vdash \sigma = \tau$$
 iff $p \Vdash \sigma \subseteq \tau$ and $p \Vdash \tau \subseteq \sigma$.

- We can unify the three relations into a single relation, since they are distinguished syntactically.
- $p \Vdash \sigma \subseteq \tau$ can be expressed in terms of $p \Vdash \sigma \in \tau$ and $p \Vdash \sigma = \tau$, so it's merely a convenience.
- Verifying that a class is \Vdash is first-order (in the parameter \mathbb{P}).

K Williams (CUNY)

Definition

 Φ a collection of first-order formulae, closed under subformulae. \mathbb{P} admits a forcing relation for Φ if there is a relation $p \Vdash \varphi$ defined for $\varphi \in \Phi$ satisfying

- IF is defined on atomic formulae as before;
- For class name Σ, p ⊢ τ ∈ Σ iff there are densely many q ≤ p so that there is ⟨ρ, r⟩ ∈ Σ with q ≤ r and q ⊢ τ = ρ;

•
$$p \Vdash \varphi \land \psi$$
 iff $p \Vdash \varphi$ and $p \Vdash \psi$;

- $p \Vdash \neg \varphi$ iff there is no $q \leq p$ so that $q \Vdash \varphi$; and
- $p \Vdash \forall x \varphi(x)$ iff $p \Vdash \varphi(\tau)$ for all \mathbb{P} -names τ .

Definition

 Φ a collection of first-order formulae, closed under subformulae. \mathbb{P} admits a forcing relation for Φ if there is a relation $p \Vdash \varphi$ defined for $\varphi \in \Phi$ satisfying

- I⊢ is defined on atomic formulae as before;
- For class name Σ, p ⊢ τ ∈ Σ iff there are densely many q ≤ p so that there is ⟨ρ, r⟩ ∈ Σ with q ≤ r and q ⊢ τ = ρ;

•
$$p \Vdash \varphi \land \psi$$
 iff $p \Vdash \varphi$ and $p \Vdash \psi$;

- $p \Vdash \neg \varphi$ iff there is no $q \leq p$ so that $q \Vdash \varphi$; and
- $p \Vdash \forall x \varphi(x)$ iff $p \Vdash \varphi(\tau)$ for all \mathbb{P} -names τ .

 \mathbb{P} admits a forcing relation for a formula φ if there is Φ containing all instances of $\varphi(\bar{\tau})$ so that \mathbb{P} admits a forcing relation for Φ .

- ロ ト - 4 同 ト - 4 回 ト - - - 回

Lemma Schema (GBC)

If \mathbb{P} admits a forcing relation for atomic formulae then it admits a forcing relation for φ for any φ in the forcing language.

Lemma Schema (GBC)

If \mathbb{P} admits a forcing relation for atomic formulae then it admits a forcing relation for φ for any φ in the forcing language.

Proof.

By induction in the meta-theory.

Constructing actual forcing extensions

Suppose $\mathfrak{M} = (M, \mathcal{X}) \models GBC$; $\mathbb{P} \in \mathcal{X}$ admits a forcing relation for all φ ; $G \subseteq \mathbb{P}$ generic over \mathfrak{M} .

(日) (同) (三) (三)

Suppose $\mathfrak{M} = (M, \mathcal{X}) \models GBC$; $\mathbb{P} \in \mathcal{X}$ admits a forcing relation for all φ ; $G \subseteq \mathbb{P}$ generic over \mathfrak{M} . Define:

$$\sigma =_{G} \tau \quad \text{iff} \quad \exists p \in G \ p \Vdash \sigma = \tau$$
$$\sigma \in_{G} \tau \quad \text{iff} \quad \exists p \in G \ p \Vdash \sigma \in \tau$$

▶ < ≣ ▶ ≣ ∽ Q (2017 Oct 13 12 / 43

・ロト ・ 同ト ・ ヨト ・ ヨト

Suppose $\mathfrak{M} = (M, \mathcal{X}) \models \text{GBC}$; $\mathbb{P} \in \mathcal{X}$ admits a forcing relation for all φ ; $G \subseteq \mathbb{P}$ generic over \mathfrak{M} . Define:

$$\sigma =_{G} \tau \quad \text{iff} \quad \exists p \in G \ p \Vdash \sigma = \tau$$
$$\sigma \in_{G} \tau \quad \text{iff} \quad \exists p \in G \ p \Vdash \sigma \in \tau$$

Then $=_G$ is an equivalence relation and a congruence with respect to \in_G . Set $\mathfrak{M}[G]$ to consist of the $=_G$ -equivalence classes with \in_G for its membership relation. Suppose $\mathfrak{M} = (M, \mathcal{X}) \models \text{GBC}$; $\mathbb{P} \in \mathcal{X}$ admits a forcing relation for all φ ; $G \subseteq \mathbb{P}$ generic over \mathfrak{M} . Define:

$$\sigma =_{G} \tau \quad \text{iff} \quad \exists p \in G \ p \Vdash \sigma = \tau$$
$$\sigma \in_{G} \tau \quad \text{iff} \quad \exists p \in G \ p \Vdash \sigma \in \tau$$

Then $=_G$ is an equivalence relation and a congruence with respect to \in_G . Set $\mathfrak{M}[G]$ to consist of the $=_G$ -equivalence classes with \in_G for its membership relation.

Theorem

$$\mathfrak{M}[G] \models \varphi([\tau_0], \dots, [\tau_m])$$
 iff there is $p \in G$ so that $p \Vdash \varphi(\tau_0, \dots, \tau_m)$.

Definition (Fujimoto)

Elementary transfinite recursion ETR is the schema asserting that for any well-order Γ and any first-order $\varphi(x, Y, A)$ (class parameter A) there is a class $S \subseteq \text{dom } \Gamma \times V$ which is a solution of the recursion

$$S_{a} = \{x : \varphi(x, S \upharpoonright a, A)\}$$

where $S_a = \{x : \langle a, x \rangle \in S\}$ and $S \upharpoonright a = S \cap ((\Gamma \upharpoonright a) \times V)$.

Definition (Fujimoto)

Elementary transfinite recursion ETR is the schema asserting that for any well-order Γ and any first-order $\varphi(x, Y, A)$ (class parameter A) there is a class $S \subseteq \text{dom } \Gamma \times V$ which is a solution of the recursion

$$S_{a} = \{x : \varphi(x, S \upharpoonright a, A)\}$$

where $S_a = \{x : \langle a, x \rangle \in S\}$ and $S \upharpoonright a = S \cap ((\Gamma \upharpoonright a) \times V)$.

Definition

 $\mathsf{ETR}_{\mathrm{Ord}}$ is the restriction of ETR to recursions of height $\leq \mathrm{Ord}$.

- ロ ト - 4 同 ト - 4 回 ト - - - 回

Proposition

Over GBC, ETR implies Con(GBC).

1

• • • • • • • • • • • •

Proposition

Over GBC, ETR implies Con(GBC).

Proof.

The Tarskian definition of truth is an elementary recursion of height ω .

K Williams (CUNY)

The strength of the class forcing theorem

2017 Oct 13 14 / 43

- ∢ 🗇 እ

Proposition

Over GBC, ETR implies Con(GBC).

Proof.

The Tarskian definition of truth is an elementary recursion of height ω .

Theorem (Sato)

 Π_1^1 -CA proves Con(GBC + ETR).

→ Ξ →

Separating ETR and $\mathsf{ETR}_{\mathrm{Ord}}$

Theorem

Over GBC, ETR *implies* Con(GBC + ETR_{Ord}).

(日) (同) (三) (三)

Separating ETR and $\mathsf{ETR}_{\mathrm{Ord}}$

Theorem

Over GBC, ETR *implies* Con(GBC + ETR_{Ord}).

Proof deferred to a later slide.

K Williams (CUNY)

The strength of the class forcing theorem

▶ < ≣ ▶ ≣ ∽ ९ ୯ 2017 Oct 13 15 / 43

Image: A match a ma

Theorem

Over GBC, ETR_{Ord} implies that every class forcing \mathbb{P} admits a forcing relation for atomic formulae.

Theorem

Over GBC, ETR_{Ord} implies that every class forcing \mathbb{P} admits a forcing relation for atomic formulae.

Proof.

 \Vdash is defined via an elementary recursion. This is a recursion along \in on \mathbb{P} -names. So we can organize it as a recursion of height Ord.

Definition

 \mathbb{P} admits a uniform forcing relation if there is a single forcing relation defined as above for all formulae φ in the forcing language.

Definition

 \mathbb{P} admits a uniform forcing relation if there is a single forcing relation defined as above for all formulae φ in the forcing language.

Note that the uniform forcing relation cannot be definable from \mathbb{P} for danger of contradicting Tarski's theorem on the undefinability of truth.

Definition

 \mathbb{P} admits a uniform forcing relation if there is a single forcing relation defined as above for all formulae φ in the forcing language.

Note that the uniform forcing relation cannot be definable from \mathbb{P} for danger of contradicting Tarski's theorem on the undefinability of truth. In particular, we don't have uniform forcing relations for ordinary set forcing in ZFC.

Getting uniform forcing relations

Theorem

Over GBC, $\mathsf{ETR}_{\mathrm{Ord}}$ implies that every class forcing $\mathbb P$ admits a unifom forcing relation.

• • • • • • • • • • • •

Over GBC, ETR_{Ord} implies that every class forcing $\mathbb P$ admits a unifom forcing relation.

Proof.

From before we have $\Vdash_{\mathbb{P}}$ for atomic formulae. Extending to all formulae is itself an elementary recursion.

Over GBC, ETR_{Ord} implies that every class forcing $\mathbb P$ admits a unifom forcing relation.

Proof.

From before we have $\Vdash_{\mathbb{P}}$ for atomic formulae. Extending to all formulae is itself an elementary recursion.

Once we've seen that every forcing having a forcing relation for atomic formulae implies ${\sf ETR}_{\rm Ord}$ we will get:

Corollary (GBC)

If every class forcing admits a forcing relation for atomic formulae then every class forcing admits a uniform forcing relation.

2017 Oct 13 18 / 43

(日) (同) (三) (三)

Iterated truth

Definition

An Ord-*iterated truth predicate for first-order truth* is a class Tr consisting of triples $\langle \beta, \varphi, \vec{a} \rangle$, where $\beta \in Ord$, φ is a first-order formula in $\mathcal{L}_{ZFC}(\hat{Tr})$, and \vec{a} is a valuation for φ satisfying the following:

(a) Tr judges the truth of atomic statements correctly:

$$\begin{aligned} &\mathrm{Tr}(\beta, x = y, \langle a, b \rangle) & \text{iff} \quad a = b \\ &\mathrm{Tr}(\beta, x \in y, \langle a, b \rangle) & \text{iff} \quad a \in b \end{aligned}$$

(b) Tr judges atomic assertions of the truth predicate self-coherently: $Tr(\beta, \hat{Tr}(x, y, z), \langle \alpha, \varphi, \vec{a} \rangle) \quad \text{iff} \quad \alpha < \beta \text{ and } Tr(\alpha, \varphi, \vec{a})$

(c) Tr performs Boolean logic correctly:

 $\begin{aligned} \operatorname{Tr}(\beta, \varphi \wedge \psi, \vec{a}) & \text{iff} \quad \operatorname{Tr}(\beta, \varphi, \vec{a}) \text{ and } \operatorname{Tr}(\beta, \psi, \vec{a}) \\ \operatorname{Tr}(\beta, \neg \varphi, \vec{a}) & \text{iff} \quad \neg \operatorname{Tr}(\beta, \varphi, \vec{a}) \end{aligned}$

(d) Tr performs quantifier logic correctly:

 $\operatorname{Tr}(\beta, \forall x \, \varphi, \vec{a}) \quad \text{iff} \quad \forall b \operatorname{Tr}(\beta, \varphi, b^{\frown} \vec{a})$

Definition

An Ord-iterated truth predicate for first-order truth relative to a parameter A is a class Tr consisting of triples $\langle \beta, \varphi, \vec{a} \rangle$, where $\beta \in \operatorname{Ord}, \varphi$ is a first-order formula in $\mathcal{L}_{\mathsf{ZFC}}(\widehat{\operatorname{Tr}}, \hat{A})$, and \vec{a} is a valuation for φ satisfying the previous conditions plus:

(a') Tr judges the truth of atomic assertions about \hat{A} correctly: Tr $(\beta, x \in \hat{A}, a)$ iff $a \in A$

Definition

An Ord-iterated truth predicate for first-order truth relative to a parameter A is a class Tr consisting of triples $\langle \beta, \varphi, \vec{a} \rangle$, where $\beta \in \operatorname{Ord}, \varphi$ is a first-order formula in $\mathcal{L}_{\mathsf{ZFC}}(\widehat{\operatorname{Tr}}, \hat{A})$, and \vec{a} is a valuation for φ satisfying the previous conditions plus:

(a') Tr judges the truth of atomic assertions about \hat{A} correctly: $\operatorname{Tr}(\beta, x \in \hat{A}, a)$ iff $a \in A$

- $Tr_{\Gamma}(A)$ denotes the Γ -iterated truth predicate relative to A.
- Tr_{Γ} denotes the Γ -iterated truth predicate relative to no parameter.

Over GBC, ETR is equivalent to $Tr_{\Gamma}(A)$ exists for all well-orders Γ and all classes A.

Over GBC, ETR is equivalent to $Tr_{\Gamma}(A)$ exists for all well-orders Γ and all classes A.

Proof.

(⇒) $\operatorname{Tr}_{\Gamma}(A)$ is defined via an elementary recursion of height $\omega \cdot \Gamma$.

Over GBC, ETR is equivalent to $Tr_{\Gamma}(A)$ exists for all well-orders Γ and all classes A.

Proof.

(\Leftarrow) Let $T = \operatorname{Tr}_{\Gamma}(A)$. Consider an instance of ETR, iterating $\varphi(x, S, A)$ along Γ . That is, we want to find $S \subseteq \operatorname{dom} \Gamma \times V$ so that $S_a = \{x : \varphi(x, S \upharpoonright a, A)\}$ for all $a \in \operatorname{dom} \Gamma$.

Over GBC, ETR is equivalent to $Tr_{\Gamma}(A)$ exists for all well-orders Γ and all classes A.

Proof.

(\Leftarrow) Let $T = \operatorname{Tr}_{\Gamma}(A)$. Consider an instance of ETR, iterating $\varphi(x, S, A)$ along Γ . That is, we want to find $S \subseteq \operatorname{dom} \Gamma \times V$ so that $S_a = \{x : \varphi(x, S \upharpoonright a, A)\}$ for all $a \in \operatorname{dom} \Gamma$. By the fixed-point lemma find $\overline{\varphi}$ so that $(V, \in, A, T \upharpoonright a) \models \overline{\varphi}(x, a)$ iff $(V, \in, A, S \upharpoonright a) \models \varphi(x, a)$.

Over GBC, ETR is equivalent to $Tr_{\Gamma}(A)$ exists for all well-orders Γ and all classes A.

Proof.

(\Leftarrow) Let $T = \operatorname{Tr}_{\Gamma}(A)$. Consider an instance of ETR, iterating $\varphi(x, S, A)$ along Γ . That is, we want to find $S \subseteq \operatorname{dom} \Gamma \times V$ so that $S_a = \{x : \varphi(x, S \upharpoonright a, A)\}$ for all $a \in \operatorname{dom} \Gamma$. By the fixed-point lemma find $\overline{\varphi}$ so that $(V, \in, A, T \upharpoonright a) \models \overline{\varphi}(x, a)$ iff $(V, \in, A, S \upharpoonright a) \models \varphi(x, a)$. Then $S = \{\langle a, x \rangle : (a, \overline{\varphi}, x) \in T\}$ is as desired.

ETR iff iterated truth

Corollary

Over GBC, ETR_{Ord} is equivalent to $Tr_{Ord}(A)$ exists for all classes A.

A B > A B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A
 B > A

ETR iff iterated truth

Corollary

Over GBC, ETR_{Ord} is equivalent to $Tr_{Ord}(A)$ exists for all classes A.

Proof.

To prove (\Rightarrow) before we used a recursion of height $\omega \cdot \Gamma$, but $\omega \cdot \operatorname{Ord} = \operatorname{Ord}$. So ETR_{Ord} suffices to construct Ord-iterated truth predicates. (\Leftarrow) goes through the same.

Corollary

Over GBC, ETR_{Ord} is equivalent to $Tr_{Ord}(A)$ exists for all classes A.

Proof.

To prove (\Rightarrow) before we used a recursion of height $\omega \cdot \Gamma$, but $\omega \cdot \operatorname{Ord} = \operatorname{Ord}$. So ETR_{Ord} suffices to construct Ord-iterated truth predicates. (\Leftarrow) goes through the same.

Corollary

Let $\Gamma \geq \omega^{\omega}$. Over GBC, ETR_{Γ} is equivalent to $\operatorname{Tr}_{\Gamma}(A)$ exists for all classes A.

イロト イヨト イヨト

ETR iff iterated truth

Corollary

Over GBC, ETR_{Ord} is equivalent to $Tr_{Ord}(A)$ exists for all classes A.

Proof.

To prove (\Rightarrow) before we used a recursion of height $\omega \cdot \Gamma$, but $\omega \cdot \operatorname{Ord} = \operatorname{Ord}$. So ETR_{Ord} suffices to construct Ord-iterated truth predicates. (\Leftarrow) goes through the same.

Corollary

Let $\Gamma \geq \omega^{\omega}$. Over GBC, ETR_{Γ} is equivalent to $Tr_{\Gamma}(A)$ exists for all classes A.

Proof.

 $\Gamma \geq \omega^{\omega}$ implies $\omega \cdot \Gamma < \Gamma + \Gamma$ and ETR_{Γ} is equivalent to $\mathsf{ETR}_{\Gamma+\Gamma}$.

Theorem

Suppose $(M, \mathcal{X}) \models \text{GBC} + \text{ETR}$. Then there is $\mathcal{Y} \subseteq \mathcal{X}$ coded in \mathcal{X} so that $(M, \mathcal{Y}) \models \text{GBC} + \text{ETR}_{Ord}$.

イロト イポト イヨト イヨト 二日

Theorem

Suppose $(M, \mathcal{X}) \models \text{GBC} + \text{ETR}$. Then there is $\mathcal{Y} \subseteq \mathcal{X}$ coded in \mathcal{X} so that $(M, \mathcal{Y}) \models \text{GBC} + \text{ETR}_{Ord}$.

Proof.

Fix $G \in \mathcal{X}$ a global well-order. Define

$$\mathcal{Y} = \bigcup_{\Gamma < \operatorname{Ord} \cdot \omega} \operatorname{Def}(M, \operatorname{Tr}_{\Gamma}(G)).$$

Then $(M, \mathcal{Y}) \models \text{GBC}$.

Theorem

Suppose $(M, \mathcal{X}) \models \text{GBC} + \text{ETR}$. Then there is $\mathcal{Y} \subseteq \mathcal{X}$ coded in \mathcal{X} so that $(M, \mathcal{Y}) \models \text{GBC} + \text{ETR}_{Ord}$.

Proof.

Fix $G \in \mathcal{X}$ a global well-order. Define

$$\mathcal{Y} = \bigcup_{\Gamma < \operatorname{Ord} \cdot \omega} \operatorname{Def}(M, \operatorname{Tr}_{\Gamma}(G)).$$

Then $(M, \mathcal{Y}) \models \text{GBC}$. It satisfies ETR_{Ord} because if $A \in \text{Def}(M, \text{Tr}_{\Gamma}(G))$ for $\Gamma < \text{Ord} \cdot \omega$ then $\text{Tr}_{\text{Ord}}(A)$ is in $\text{Def}(M, \text{Tr}_{\Gamma+\text{Ord}+1}(G))$.

Theorem

Suppose $(M, \mathcal{X}) \models \text{GBC} + \text{ETR}$. Then there is $\mathcal{Y} \subseteq \mathcal{X}$ coded in \mathcal{X} so that $(M, \mathcal{Y}) \models \text{GBC} + \text{ETR}_{Ord}$.

Proof.

Fix $G \in \mathcal{X}$ a global well-order. Define

$$\mathcal{Y} = \bigcup_{\Gamma < \operatorname{Ord} \cdot \omega} \operatorname{Def}(M, \operatorname{Tr}_{\Gamma}(G)).$$

Then $(M, \mathcal{Y}) \models \text{GBC}$. It satisfies ETR_{Ord} because if $A \in \text{Def}(M, \text{Tr}_{\Gamma}(G))$ for $\Gamma < \text{Ord} \cdot \omega$ then $\text{Tr}_{\text{Ord}}(A)$ is in $\text{Def}(M, \text{Tr}_{\Gamma+\text{Ord}+1}(G))$.

Corollary

Over GBC, ETR *implies* $Con(GBC + ETR_{Ord})$.

K Williams (CUNY)

2017 Oct 13 24 / 43

Suppose $(M, \mathcal{X}) \models \text{GBC} + \text{ETR}_{\Gamma \cdot \omega}$ for $\Gamma \in \mathcal{X}$. Then there is $\mathcal{Y} \subseteq \mathcal{X}$ coded in \mathcal{X} so that $(M, \mathcal{Y}) \models \text{GBC} + \text{ETR}_{\Gamma}$.

K Williams (CUNY)

The strength of the class forcing theorem

▶ < ≣ ▶ ≣ ∽ < < 2017 Oct 13 25 / 43

・ロト ・ 同ト ・ ヨト ・ ヨト

Outline of class forcing theorem \Rightarrow ETR_{Ord}

Theorem

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider a certain \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider a certain \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

So it admits its uniform $\mathcal{L}_{Ord,0}(\in, V^{\mathbb{F}_A})$ -forcing relation.

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider a certain \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

So it admits its uniform $\mathcal{L}_{\text{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation. So the $\mathcal{L}_{\text{Ord},\omega}(\in, \hat{A})$ -truth predicate exists.

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider a certain \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

So it admits its uniform $\mathcal{L}_{\mathrm{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation. So the $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate exists. So the Ord-iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate exists.

- ロ ト - 4 同 ト - 4 回 ト - - - 回

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider a certain \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

So it admits its uniform $\mathcal{L}_{\text{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation.

So the $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate exists.

So the Ord-iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate exists.

So ETR_{Ord} relative to the parameter A holds.

- ロ ト - 4 同 ト - 4 回 ト - - - 回

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider a certain \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

So it admits its uniform $\mathcal{L}_{\mathrm{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation.

So the $\mathcal{L}_{\text{Ord},\omega}(\in, \hat{A})$ -truth predicate exists.

So the Ord-iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate exists.

So ETR_{Ord} relative to the parameter A holds.

So ETR_{Ord} holds.

- ロ ト - 4 同 ト - 4 回 ト - - - 回

Infinitary languages

Definition

A a class. $\mathcal{L}_{\text{Ord},\omega}(\in, \hat{A})$ is the partial infinitary language relative to the parameter A. Formulae formed according to the following schema.

- Atomic formulae: x = y, $x \in y$, $x \in \hat{A}$;
- If φ is a formula then so is $\neg \varphi$;
- If φ_i are formulae for all i ∈ I a set, so are V_{i∈I} φ_i and Λ_{i∈I} φ_i, so long as the φ_i have finitely many free free variables.
- If φ is a formula then so is $\exists x \varphi(x)$ and $\forall x \varphi(x)$.

< □ > < □ > < □ > < □ >

Infinitary languages

Definition

A a class. $\mathcal{L}_{\text{Ord},\omega}(\in, \hat{A})$ is the partial infinitary language relative to the parameter A. Formulae formed according to the following schema.

- Atomic formulae: x = y, $x \in y$, $x \in \hat{A}$;
- If φ is a formula then so is $\neg \varphi$;
- If φ_i are formulae for all i ∈ I a set, so are V_{i∈I} φ_i and Λ_{i∈I} φ_i, so long as the φ_i have finitely many free free variables.
- If φ is a formula then so is $\exists x \varphi(x)$ and $\forall x \varphi(x)$.

Definition

A a class. $\mathcal{L}_{\mathrm{Ord},0}(\in, \hat{A})$ is the the quantifier-free infinitary language relative to the parameter A. It is the restriction of $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ to quantifier-free formulae.

K Williams (CUNY)

2017 Oct 13 27 / 43

イロト イポト イヨト イヨト 三日

Lemma (Holy, Krapft, Lücke, Njegomir, Schlicht)

If a class forcing notion \mathbb{P} admits a forcing relation for atomic formulae then it admits a uniform forcing relation in the quantifier-free infinitary forcing language $\mathcal{L}_{\mathrm{Ord},0}(\in, V^{\mathbb{P}}, \dot{G})$.

Lemma (Holy, Krapft, Lücke, Njegomir, Schlicht)

If a class forcing notion \mathbb{P} admits a forcing relation for atomic formulae then it admits a uniform forcing relation in the quantifier-free infinitary forcing language $\mathcal{L}_{\mathrm{Ord},0}(\in, V^{\mathbb{P}}, \dot{G})$.

Key point: this is done via a purely syntactic translation, not making reference to generic filters or truth in a forcing extension.

Truth predicates for the infinitary language

Definition

A a class. An $\mathcal{L}_{Ord,\omega}(\in, \hat{A})$ -truth predicate is a class Tr consisting of pairs $\langle \varphi, \vec{a} \rangle$, where φ is an $\mathcal{L}_{Ord,\omega}(\in, \hat{A})$ -formula and \vec{a} is a valuation for φ satisfying the following:

(a) ${\rm Tr}$ judges the truth of atomic statements correctly:

$$\begin{aligned} &\operatorname{Tr}(x=y,\langle a,b\rangle) & \text{iff} \quad a=b \\ &\operatorname{Tr}(x\in y,\langle a,b\rangle) & \text{iff} \quad a\in b \\ &\operatorname{Tr}(x\in \hat{A},\langle a\rangle) & \text{iff} \quad a\in A \end{aligned}$$

(b) Tr performs Boolean logic correctly:

$$\operatorname{Tr}\left(\bigwedge_{i\in I} \varphi_i, \vec{a}\right)$$
 iff $\operatorname{Tr}(\varphi_i, \vec{a})$ for all $i \in I$
 $\operatorname{Tr}(\neg \varphi, \vec{a})$ iff $\neg \operatorname{Tr}(\varphi, \vec{a})$

(c) Tr performs quantifier logic correctly:

 $\operatorname{Tr}(\forall x \, \varphi, \vec{a}) \quad \text{iff} \quad \forall b \operatorname{Tr}(\varphi, b^{\frown} \vec{a})$

Infinitary truth predicates \rightarrow Ord-iterated truth predicates

Theorem

A a class. If there is an $\mathcal{L}_{\operatorname{Ord},\omega}(\in, \hat{A})$ -truth predicate then there is an Ord -iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate.

A a class. If there is an $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate then there is an Ord -iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate.

Intuition.

Define a certain syntactic translation

$$(eta, arphi) \mapsto arphi_{eta}^*$$

 $\operatorname{Ord} \times \mathcal{L}_{\omega,\omega}(\in, \hat{A}) \to \mathcal{L}_{\operatorname{Ord},\omega}(\in, \hat{A})$

so that $\varphi(\vec{a})$ is true at level β iff $\varphi_{\beta}^{*}(\vec{a})$ is true.

A a class. If there is an $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate then there is an Ord -iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate.

Intuition.

Define a certain syntactic translation

$$(eta, arphi) \mapsto arphi_{eta}^*$$

 $\operatorname{Ord} imes \mathcal{L}_{\omega,\omega}(\in, \hat{A}) o \mathcal{L}_{\operatorname{Ord},\omega}(\in, \hat{A})$

so that $\varphi(\vec{a})$ is true at level β iff $\varphi_{\beta}^*(\vec{a})$ is true. Key point: This translation is defined via a set-like recursion of height Ord, so it can be done just from GBC.

The *-translation (easy cases)

The translation is defined by induction on β and φ :

• Atomic formulae:

$$\begin{split} & [x=y]^*_\beta & = \quad [x=y] \\ & [x\in y]^*_\beta & = \quad [x\in y] \\ & [x\in \hat{A}]^*_\beta & = \quad [x\in \hat{A}] \end{split}$$

• Boolean combinations:

$$\begin{aligned} [\varphi \wedge \psi]^*_{\beta} &= [\varphi^*_{\beta} \wedge \psi^*_{\beta}] \\ [\neg \varphi]^*_{\beta} &= [\neg \varphi^*_{\beta}] \end{aligned}$$

• Quantifiers:

$$[\forall x \varphi]^*_{\beta} = [\forall x \varphi^*_{\beta}]$$

K Williams (CUNY)

Image: A math a math

The translation is defined by induction on β and φ :

- $[\hat{Tr}(x, y, z)]^*_{\beta}$ is the assertion that
 - x is some stage $\xi < \beta$;
 - y is some formula ψ ; and
 - z is a valuation for ψ to values \vec{a} so that $\psi_{\xi}^{*}(\vec{a})$.

The translation is defined by induction on β and φ :

- $[\hat{Tr}(x, y, z)]^*_{\beta}$ is the assertion that
 - x is some stage $\xi < \beta$;
 - y is some formula ψ ; and
 - z is a valuation for ψ to values \vec{a} so that $\psi_{\xi}^{*}(\vec{a})$.

Formally:

$$\bigvee_{\substack{\xi < \beta \\ \psi \in \mathcal{L}_{\omega,\omega}(\epsilon, \hat{\operatorname{tr}}, \hat{A})}} \left[(x = \xi'' \land (y = \psi'' \land \exists \vec{a} \text{ valuation}_{\psi}(z, \vec{a}) \land \psi_{\xi}^{*}(\vec{a}) \right]$$

イロト イポト イヨト イヨト 二日

A a class. If there is an $\mathcal{L}_{Ord,\omega}(\in, \hat{A})$ -truth predicate then there is an Ord-iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate.

A a class. If there is an $\mathcal{L}_{\operatorname{Ord},\omega}(\in, \hat{A})$ -truth predicate then there is an Ord -iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate.

Proof sketch.

Let T be the $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate.

A a class. If there is an $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate then there is an Ord -iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate.

Proof sketch.

Let T be the $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate. Define the proposed Ord-iterated truth predicate Tr as $(\beta, \varphi, \vec{a}) \in \mathrm{Tr}$ iff $(\varphi_{\beta}^*, \vec{a}) \in \mathrm{T}$.

A a class. If there is an $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate then there is an Ord -iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate.

Proof sketch.

Let T be the $\mathcal{L}_{Ord,\omega}(\in, \hat{A})$ -truth predicate. Define the proposed Ord-iterated truth predicate Tr as $(\beta, \varphi, \vec{a}) \in \text{Tr}$ iff $(\varphi_{\beta}^*, \vec{a}) \in \text{T}$. Inductively show that Tr really is an iterated truth predicate. The only substantive case is:

•
$$(\beta, \hat{\mathrm{Tr}}(x, y, z), \langle \alpha, \varphi, \vec{a} \rangle) \in \mathrm{Tr} \text{ iff } \alpha < \beta \text{ and } (\alpha, \varphi, \vec{a}) \in \mathrm{Tr}$$

A a class.

A a class.

 $\operatorname{Coll}(\omega, V) = \{ p : p : \omega \to V \text{ injective partial function} \}$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ● ●

A a class.

 $\operatorname{Coll}(\omega, V) = \{ p : p : \omega \to V \text{ injective partial function} \}$

 \mathbb{F}_A is defined by adding certain suprema to $\operatorname{Coll}(\omega, V)$:

$$\mathbb{F}_{\mathcal{A}} = \operatorname{Coll}(\omega, V) \sqcup \{e_{n,m} : n, m \in \omega\} \sqcup \{a_n : n \in \omega\}$$

where for $p \in \operatorname{Coll}(\omega, V)$

$$p \le e_{n,m}$$
 iff $p(n) \in p(m)$
 $p \le a_n$ iff $p(n) \in A$

and $\mathbf{1}_{\mathbb{F}_A} = \emptyset \in \operatorname{Coll}(\omega, V)$ is above the new conditions.

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

A condition in the forcing \mathbb{F}_{Ord}



K Williams (CUNY)

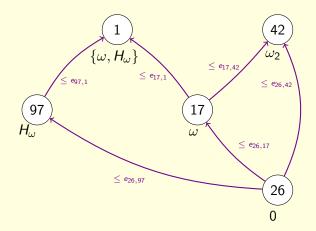
The strength of the class forcing theorem

臣 2017 Oct 13 35 / 43

イロト イヨト イヨト イヨト

SQC

A condition in the forcing \mathbb{F}_{Ord}



K Williams (CUNY)

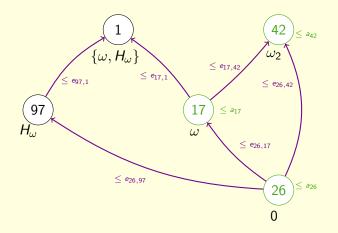
E 2017 Oct 13 35 / 43

∃ ▶

・ロト ・日下・ ・ ヨト・

DQC

A condition in the forcing \mathbb{F}_{Ord}



K Williams (CUNY)

E 2017 Oct 13 35 / 43

э

・ロト ・日下・ ・ ヨト・

DQC

 $\operatorname{Coll}(\omega, V)$ is a dense subclass of \mathbb{F}_A

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = のへで

 $\operatorname{Coll}(\omega, V)$ is a dense subclass of \mathbb{F}_A but they do not give the same forcing extension!

 $\operatorname{Coll}(\omega, V)$ is a dense subclass of \mathbb{F}_A but they do not give the same forcing extension!

The reason is that we have new \mathbb{F}_A -names which aren't equivalent to any $\operatorname{Coll}(\omega, V)$ -names.

 $\operatorname{Coll}(\omega, V)$ is a dense subclass of \mathbb{F}_A but they do not give the same forcing extension!

The reason is that we have new \mathbb{F}_A -names which aren't equivalent to any $\operatorname{Coll}(\omega, V)$ -names.

$$\dot{arepsilon} = \{ \langle \mathsf{op}(\check{n},\check{m}), e_{n,m}
angle : n, m \in \omega \}$$

 $\dot{\mathrm{A}} = \{ \langle \check{n}, a_n
angle : n \in \omega \}$

 $\operatorname{Coll}(\omega, V)$ is a dense subclass of \mathbb{F}_A but they do not give the same forcing extension!

The reason is that we have new \mathbb{F}_A -names which aren't equivalent to any $\operatorname{Coll}(\omega, V)$ -names.

$$\dot{arepsilon} = \{ \langle \mathsf{op}(\check{n},\check{m}), e_{n,m}
angle : n, m \in \omega \}$$

 $\dot{\mathrm{A}} = \{ \langle \check{n}, a_n
angle : n \in \omega \}$

These are set-sized names yet carry information about a proper class of conditions p.

 $\operatorname{Coll}(\omega, V)$ is a dense subclass of \mathbb{F}_A but they do not give the same forcing extension!

The reason is that we have new \mathbb{F}_A -names which aren't equivalent to any $\operatorname{Coll}(\omega, V)$ -names.

$$\dot{arepsilon} = \{ \langle \mathsf{op}(\check{n},\check{m}), e_{n,m}
angle : n, m \in \omega \}$$

 $\dot{\mathrm{A}} = \{ \langle \check{n}, a_n
angle : n \in \omega \}$

These are set-sized names yet carry information about a proper class of conditions p.

For each set a define the name

$$\dot{n}_{a} = \{\langle \check{k}, \underbrace{\{\langle n, a \rangle\}}_{\in \operatorname{Coll}(\omega, V)} \rangle : k < n \in \omega\}.$$

 \dot{n}_a names the $n \in \omega$ that gets mapped to a by the generic bijection.

Defining truth from the forcing relation

Theorem

If \mathbb{F}_A admits its uniform $\mathcal{L}_{\operatorname{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation then the $\mathcal{L}_{\operatorname{Ord},\omega}(\in, \hat{A})$ -truth predicate exists.

Defining truth from the forcing relation

Theorem

If \mathbb{F}_A admits its uniform $\mathcal{L}_{\mathrm{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation then the $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate exists.

Intuition.

Define a syntactic translation

$$arphi \mapsto arphi^{\star} \ \mathcal{L}_{\mathrm{Ord},\omega}(\in,\hat{\mathcal{A}}) o \mathcal{L}_{\mathrm{Ord},0}(\in,\mathcal{V}^{\mathbb{F}_{\mathcal{A}}})$$

so that for $G \subseteq \mathbb{F}_A$ generic

$$(V, \in, A) \models \varphi(a) \quad \text{iff} \quad V[G] \models \left[(\omega, \dot{\varepsilon}^G, \dot{A}^G) \models \varphi^*((\dot{n}_a)^G) \right]$$

Defining truth from the forcing relation

Theorem

If \mathbb{F}_A admits its uniform $\mathcal{L}_{\mathrm{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation then the $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate exists.

Intuition.

Define a syntactic translation

$$arphi \mapsto arphi^{\star} \ \mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A}) o \mathcal{L}_{\mathrm{Ord},\mathbf{0}}(\in, V^{\mathbb{F}_A})$$

so that for $G \subseteq \mathbb{F}_A$ generic

$$(V, \in, A) \models \varphi(a) \quad \text{iff} \quad V[G] \models \left[(\omega, \dot{\varepsilon}^G, \dot{A}^G) \models \varphi^{\star}((\dot{n}_a)^G) \right]$$

Key point: the translation is defined via a set-like recursion, so we can carry it out in GBC.

K Williams (CUNY)

The *****-translation

The translation is defined by induction on φ :

• Atomic formulae:

$$[x = y]^{\star} = [x = y]$$
$$[x \in y]^{\star} = [x \stackrel{\circ}{\varepsilon} y]$$
$$[x \in \hat{A}]^{\star} = [x \in \dot{A}]$$

• Boolean combinations:

$$\left[\bigwedge_{i} \varphi_{i}\right]^{\star} = \left[\bigwedge_{i} \varphi_{i}^{\star}\right]$$
$$\left[\neg\varphi\right]^{\star} = \left[\neg\varphi^{\star}\right]$$

• Quantifiers:

$$[\forall x \varphi]^* = \left[\bigwedge_{m \in \omega} \varphi^*(\check{m}) \right]$$

K Williams (CUNY)

The strength of the class forcing theorem

Suppose the uniform $\mathcal{L}_{\mathrm{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation exists. Define a class Tr as

$$(\varphi, \vec{a}) \in \operatorname{Tr}$$
 iff $\mathbf{1} \Vdash_{\mathbb{F}_A} \varphi^*(\dot{n}_{a_0}, \dots, \dot{n}_{a_k}).$

Image: A match a ma

Suppose the uniform $\mathcal{L}_{{\rm Ord},0}(\in,V^{\mathbb{F}_A})\text{-forcing relation exists. Define a class <math display="inline">{\rm Tr}$ as

$$(\varphi, \vec{a}) \in \operatorname{Tr}$$
 iff $\mathbf{1} \Vdash_{\mathbb{F}_A} \varphi^*(\dot{n}_{a_0}, \dots, \dot{n}_{a_k}).$

Lemma

For any
$$arphi\in\mathcal{L}_{\mathrm{Ord},\omega}(\in,\hat{A})$$
, any sets $\mathsf{a}_0,\ldots,\mathsf{a}_k$, any $\mathsf{p}\in\mathbb{F}_A$

$$p \Vdash \varphi^*(\dot{n}_{a_0}, \ldots, \dot{n}_{a_k}) \quad iff \quad \mathbf{1} \Vdash \varphi^*(\dot{n}_{a_0}, \ldots, \dot{n}_{a_k}).$$

K Williams (CUNY)

Suppose the uniform $\mathcal{L}_{{\rm Ord},0}(\in,V^{\mathbb{F}_A})\text{-forcing relation exists. Define a class <math display="inline">{\rm Tr}$ as

$$(\varphi, \vec{a}) \in \operatorname{Tr}$$
 iff $\mathbf{1} \Vdash_{\mathbb{F}_A} \varphi^*(\dot{n}_{a_0}, \dots, \dot{n}_{a_k}).$

Lemma

For any
$$arphi\in\mathcal{L}_{\mathrm{Ord},\omega}(\in,\hat{\mathcal{A}})$$
, any sets $\mathsf{a}_0,\ldots,\mathsf{a}_k$, any $\mathsf{p}\in\mathbb{F}_{\mathcal{A}}$

$$p \Vdash \varphi^*(\dot{n}_{a_0}, \ldots, \dot{n}_{a_k}) \quad iff \quad \mathbf{1} \Vdash \varphi^*(\dot{n}_{a_0}, \ldots, \dot{n}_{a_k}).$$

Proved by induction on φ .

Definition

$$(\varphi, \vec{a}) \in \operatorname{Tr}$$
 iff $\mathbf{1} \Vdash_{\mathbb{F}_A} \varphi^*(\dot{n}_{a_0}, \dots, \dot{n}_{a_k}).$

Lemma

Tr satisfies the definition of an $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate.

K Williams (CUNY)

The strength of the class forcing theorem

2017 Oct 13 40 / 43

Definition

$$(\varphi, \vec{a}) \in \operatorname{Tr}$$
 iff $\mathbf{1} \Vdash_{\mathbb{F}_A} \varphi^*(\dot{n}_{a_0}, \dots, \dot{n}_{a_k}).$

Lemma

Tr satisfies the definition of an $\mathcal{L}_{Ord,\omega}(\in, \hat{A})$ -truth predicate.

Proved by induction on φ .

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

・ロト ・ 同ト ・ ヨト ・ ヨト

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider the forcing \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider the forcing \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

So it admits its uniform $\mathcal{L}_{Ord,0}(\in, V^{\mathbb{F}_A})$ -forcing relation.

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider the forcing \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

So it admits its uniform $\mathcal{L}_{\text{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation. So the $\mathcal{L}_{\text{Ord},\omega}(\in, \hat{A})$ -truth predicate exists.

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider the forcing \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

So it admits its uniform $\mathcal{L}_{\text{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation. So the $\mathcal{L}_{\text{Ord},\omega}(\in, \hat{A})$ -truth predicate exists.

So the Ord-iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate exists.

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider the forcing \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

So it admits its uniform $\mathcal{L}_{Ord,0}(\in, V^{\mathbb{F}_A})$ -forcing relation. So the $\mathcal{L}_{Ord,\omega}(\in, \hat{A})$ -truth predicate exists.

So the Ord-iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate exists.

So ETR_{Ord} relative to the parameter A holds.

Over GBC, if every class forcing admits its forcing relation for atomic formulae then ${\sf ETR}_{\rm Ord}$ holds.

Outline.

Fix a class A. Consider the forcing \mathbb{F}_A . It admits a forcing relation \Vdash for atomic formulae.

So it admits its uniform $\mathcal{L}_{\mathrm{Ord},0}(\in, V^{\mathbb{F}_A})$ -forcing relation.

So the $\mathcal{L}_{\mathrm{Ord},\omega}(\in, \hat{A})$ -truth predicate exists.

So the Ord-iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicate exists.

So ETR_{Ord} relative to the parameter A holds.

So ETR_{Ord} holds.

The following are equivalent over GBC.

- The class forcing theorem: all class forcing notions admit a forcing relation for atomic formulae.
- All class forcing notions admit a uniform $\mathcal{L}_{\omega,\omega}(\in, V^{\mathbb{P}})$ -forcing relation.
- All class forcing notions admit a uniform L_{Ord,Ord}(∈, V^ℙ)-forcing relation.
- ETR_{Ord}.
- Ord-iterated $\mathcal{L}_{\omega,\omega}(\in, \hat{A})$ -truth predicates exist.
- $\mathcal{L}_{\mathrm{Ord},\omega}(\in, A)$ -truth predicates exist.
- $\mathcal{L}_{\mathrm{Ord},\mathrm{Ord}}(\in, A)$ -truth predicates exist.
- Clopen class games of rank at most Ord + 1 are determined.

(日) (同) (三) (三)

Thank you!

K Williams (CUNY)

The strength of the class forcing theorem

2017 Oct 13 43 / 43

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 差 - 釣�?